
irnpmer neuvork protocols. A. Danthine. editor,
' i n i v e r s i t e de liege. I ' - > 7 X .

F3

F I N I T E S T A T E D E S C R I P T I O N
O F C O M M U N I C A T I O N P R O T O C O L S *

Gregor V. Bochmann
Departement de Mathematiques

Ecole Polytechnique Federals de Lausanne
Lausanne, Suisse

This paper gioes an overview of a finite state
model for the aped fixation and validation of com-
munication protocol:;. The concept of "direst cou-
pling" hcwecn inlevaoting finite state components
is used io describe a hierarchical structure of
protocol layers. This paper discusses different
aspects of rirotocol validation, some verification
tools based on the finite state formalism., and
the b'j.sic limitations; of the finite state model-
ling of 'protocols. An "empty medium abstraction"
ts proposed for' reducing tne complexity of the
overall- s.ii-tmri description. The concept of "ad-
joint sfat-cs" can be useful for awrmarising the
relaiioe synchronization between the communica-
ting system components. These concepts are applied
to the analysis of a simple ..ilternating bit proto-
col, and to the X.25 call set-up and clearing pro-
cedures, '"he analysis, of X.25 shows that the pro-
cedures are stable in respect to intermittant
perturbations in the synchronization of tne inter-
face introduced for different reasons, including
occasional racket loss. However, on very rare
occasions, an undesirable cyclic behavior could
oe encountered.

the complexity of the state space of the system,
and the concept of "adjoint states" for summarizing
the relative synchronization between the communica-
ting entities. The second purpose of the paper is
the detailed presentation of an analysis of the
X.25 call set-up and clearing procedures. Most of
the ideas and results in this paper have already
been described in an unpublished report (1).

2. F I N I T E STATE DESCRIPTION OF PROTOCOLS

The basic approach of the description method
consists of subdividing the system into a number of
communicating components, such that each component
is a finite state machine. For the i-th component
of the system, we use the following notation : The
possible states of the component are written s. .

A transition between two states s. and s:
identified by these states

si s: The transi-

tions of the component are partitioned into a num-

ber of transition types. We write "

indicate that the transition
t .

s.

s.

toi
is of type

1 . I N T R O D U C T I O N

Formalized methods for the specification and
verification of communication protocols are deve-
loped for simplifying the problems of design, va-
lidation and implementation. Two basically diffe-
rent approaches have been used for this purpose :
modelling by finite state machines, and specifi-
cations using high-level programming languages.

The purpose of this paper is two-fold. The
paper gives an overview of a modelling approach
with finite state machines and points out its
advantages and limitations. It also suggests the
use of the "empty medium abstraction" for reducing

t- On leave from the Universite de Montreal,
Canada.

* Work supported in part by the National Research
Council of Canada and the Ministere de 1'Educa-
tion du Quebec.

2.1 Direct c o u p l i n g

A possible basic communication mecanism between
the different components of the system is what we
call "direct coupling". For a given component, cer-
tain types of transitions are directly coupled with
transition types in other components. Such a transi-
tion can only be executed in parallel with a corres-
ponding transition in another component. All ion-
coupled transitions of a component can be executed
independently from the other components. (In the
examples given in this paper, most transition types
turn out to be coupled).

For each pair of communicating components i
and j , the coupling is specified by a list of
pairs of directly coupled transition types

!> t . to indicate that tran-{t. || t.} . We write

sition type of component i is directly cou-

pled with transition type t. of component j

For example, the direct communication of a sender
and receiver component in the form of message trans-
mission can be modelled by the direct coupling

F3- 1

in ; m-sender ' receiver which means that a transi- be modelled by the state diagram of figure 2.

tion of type m of the dend^r can only be executed
with a simultaneous transition of type m of the
receiver. (We use the notation where sending tran-
sition types are underlined, and receiving tran-
sition types are non-underlined).

The concept of direct coupling can be used to
describe the interaction between the two stations
of a communications protocol through a medium
(see section 3), between a station and the medium
(see section 2.2 below), and between different
components within the same station (2). One way
of realizing direct coupling is by identifying
certain output symbols of the automaton of one
component with certain input symbols of the other
component, without any intermediate buffering
(3,4).

2.2. M o d e l l i n g communication protocols

In the following, we consider the modelling of
the communication between two stations. In the
case of a hierarchical protocol structure in seve-
ral layers, we consider the specification and va-
lidation of one layer, and its relationship to
the layers above and below.

i t

1
L

medium

Figure 1 : Architectural structure o

J
communication system.

Figure 1 shows the component structure of the
two stations, from the point of view of the proto-
col layer implemented in two particular system
components, called entity l and en-city S. These
components use facilities of the component called
medium for the exchange of information (at the
lowest protocol level, this would be the physical
transmission medium between the two stations). In
turn, they provide a communication facility for
the components, called user I and user 2, of the
next higher protocol layer. Therefore, together,
the components hnticy i, ^ntiu> S, and medium can
be considered the communication medium to be used
by this next higher layer.

Each component, including the nediim, is model-
led by a finite state machine. For example, a me-
dium providing unreliable transmission of messa-
ges between a nendvr and receiver component can

rroneou
message

in tran-
sit

Figure 2 : Finite state model of a
simole transmission medium.

The interface between the components, in our
model, are modelled by direct couplings. In the
above example, the interface between the candsv
and the me
coupling msender

would be cnaracterized by the direct

and the bet-
ween the
m

•ijiver and the medium by

receiver' ' medium' "" receiver1' medium '
latter transitions indicating the reception of an
erroneous message). The transition type lotto and
error of the medium would be uncoupled (sponta-
neous) .

A similar formalism for the modelling of proto-
cols has been developed independently by Rusbridge
and Langsford (3), who also give a characteriza-
tion of different kinds of simple transmission
media.

2.3 Protocol v a l i d a t i o n

The validation of protocols specified in terms
of interacting finite state components can be auto-
mated to a large extend (5,6). Compared to the ap-
proach of specifying protocols in terms of a pro-
gramming language, where this does not seem feasa-
ble, this is an advantage of the finite state ap-
proach; although it sometimes seems to be a neces-
sity because of the state space explosion of the
considered problems.

It is difficult to define what protocol valida-
tion means. The following points, each describes
a certain aspect of the operation of a protocol.
Protocol validation can be considered as the ana-
lysis of these different aspects, and the compa-
rison of the results obtained with the operatio-
nal requirements (7). These principles are the
same for protocols and other systems of parallel
processes (8).

2 13^1_ R e a c h a b i l i t y analysis

The basis for all subsequent validation aspects
is an analysis of the possible transitions of the
overall system, the state space of which is the
Cartesian product of the state spaces of the inter-
acting components. The reachability analysis
yields the transition diagram of the overall
system.

F3- 2

2.3. Dead!ocks

A deadlock is characterized by a state of the
overall system, reachable from the initial state
of the system, for which no further transition is
possible. Deadlocks must be avoided, since once
the system has arrived in a deadlock state, it is
blocked forever.

? .: ? .L 3 _ Liyeness

A state (or transition) is live if it can be
reached from all states of the overall system
that are reachable from the initial state. Usual-
ly a protocol contains a so-called "home state",
or "ready state", which is live and from which
all pertinent operations of the protocol can be
reached.

2_.3^4__Loop_s

Each protocol with a home state contains a loop
in the transition diagram of the overall system
starting at the home state and leading back to it.
Usually, there are other loops necessary for the
operation of the protocol. In addition, mostly
during the design phase of a new protocol, other
loops can possibly be found in the transition
diagram. They are undesirable since their execu-
tion does not advance the useful processing of
the protocol. Because they could be followed by
the system an unlimited number of times, depen-
ding on the relative speed of different opera-
tions, they have been called "tempo-blockings"
(6).

It seems difficult to automatically distinguish
between loops that are useful and necessary, and
loops that are undesirable. To make this distinc-
tion, it is important that the transition diagram
of the overall system be comprehensible to the
(human) designer. (For the other points of the
validation, complete automation seems to be possi-
ble).

?^ 3_. 5 __Sel f^synchroni za ti on and stability

A system is self-synchronizing if, started up
in any possible state of the overall system, it
always returns, after some finite number of tran-
sitions, into the normal cycle of operation inclu-
ding the home state. This property is important
for error recovery in an unreliable environment
where, for example, the transmission medium does
not always function properly, one station does not
follow the prescribed protocol due to a software
or hardware bug, or the protocol is not properly
initialized.

The self-synchronizing property implies proto-
col stability, because it ensures that the proto-
col reverts directly to its normal mode of opera-
tion after any initial or intermittent perturba-
tion in the synchronization of the two communica-
ting subsystems, introduced for whatever reason.

2^3 ;6__Characteri zati on_of the operation
§Y_§S:tion_seguences~

To verify that the actions executed by the pro-
tocol correspond to the operations to be performed,
it may be useful to characterize the possible

action sequences of the overall system bv regular
expressions (9), Since the system usually contains
loops, the possibility of infinite action sequen-
ces must be foreseen. This requires an extension
(9,10) of the classical formalism of regular ex-
pressions.

2.4 Abstraction

We consider again the hierarchical aspect of the
protocol model shown in figure 1. As explained abo-
ve, the operation of the three components in the
broken box is described by an overall transition
diagram which is the product of the three inter-
acting components. From the point of view of the
next higher protocol layer, i.e. as seen from the
components user 1 and user 2, these three compo-
nents together form a transmission medium. From
this point of view the broken box should be des-
cribed by a finite state diagram containing essen-
tially the transitions that are directly coupled
with transitions of the higher level entities
user 1 and user 2. Clearly, this diagram may be
much simpler than the overall transition diagram
of the box, and is therefore an abstraction of the
latter.

A possible method for obtaining this abstraction
is the following : Derive an extended regular ex-
pression for the possible action sequences of the
protocol (see section 2.3.6), including as rele-
vant actions only those transitions that are di-
rectly coupled with the next higher protocol layer.
Then construct a (simple) finite state machine
which realizes exactly the action sequences speci-
fied by the regular expression. A simple example
is given in section 4.

2.5 L i m i t a t i o n s of the finite state
approach

The main limitation of the finite state approach
to the modelling of protocols is the "state space
explosion". A very large number of states are nee-
ded to describe a component of a protocol which
involves counters or more complex data structures.
The number of states is multiplied when the tran-
sition diagram of the overall system is construc-
ted (see section 2.3.1). To a certain degree,
these problems can be overcome by automated vali-
dation tools (5,6).

Another limitation is inherent in the finite
state modelling of the transmission medium. This
limitation restricts the analysis to situations
with only a small number of messages in transit at
any given time. In the case of a datagram service
or a full duplex link, these conditions are not
always satisfied. As an extension to the finite
state model described in this paper, regular ex-
pressions may be used to model message queues (1)
without imposing a limit on the number of messages
in transit.

The approach using a high-level programming
language with assertions on program variables for
the specification and validation of protocols
seems to be especially useful in cases where the
finite state approach encounters problems. There-
fore a unified method combining both approaches
has been proposed (11).

F3- 3

3. "HE "EMPTY M E D I U M " ABSTRAC"

We call "empty medium abstraction" a simplified
view of the overall transition diagram of the pro-
tocol, i.e. of the broken box in figure 1, which
consists of considering only those states in the
product state space of the overall system for
which the medium component is empty, i.e. no mes-
sages are in transit. This abstraction is parti-
cularly useful when the protocol is such that
only a small number of messages are in transit at
any given time, such as
(a) protocols using a two-way alternate mode

of transmission (HDX),
(b) protocols using a two-way simultaneous mode

of transmission (FDX)
in a conversational mode, i.e. only a small num-
ber of messages are outstanding at any time in
each direction. Most initialization protocols are
of this nature, and in particular the example
treated in section 6.

te. Let oe the sequence

r—H—; -hi 1

Figure 3 : Architectural structure of a
system with direct coupling
between the communicating
entities.

Since the medium is in the empty state for all
states of the protocol considered, the medium com-
ponent is no longer needed for the description of
the protocol in the empty medium abstraction, as
indicated in figure 3.

Instead, the communicating entities 1 and 2
are directly coupled. The nature of this coupling
takes into account the internal structure of the
medium. Taking the example of section 2.2 and
figure 2, we arrive at a direct coupling between
the components sender and receiver which is cha-
racterized by the following pairs of coupled tran-
sition types :

m . . (correct message trans-m—sender' receiver

(ii) m
v ' - I |Esender11 receiver

m

mission, transition
path in the medium :
m.m)
(message transmission
with error, transition
path in the medium :
m.error.E)
(message loss, transi-
tion path in the
medium : m.loss).

We note that I denotes the identity transition,
i.e. no transition.

In general, the direct coupling between the
two entities is characterized by the set of all
paths of transitions within the medium component
that lead from the empty state back to this sta-

in-sender'

(K! \ ^('<
"ni ' m ' "m

of transition types corresponding to such a path.
(In the above example, we may for instance consider
a = rn.error.E). Then the direct coupling between
the two entities contains all pairs of coupled tran-
sition type sequences o1j|o2 , where

c?i = tj .ti ... tj n ' and

a2 = tr1'.tij'2\..trn"' are sequences of transi-
tion types of the components entity i and entity 2,
respectively, such that the transition types of the
medium directly coupled with the entity 1 or enti-
ty 2 components occur in a in an order compatible
with the order of the corresponding transition ty-
pes in ai and a2 . Without loss of generality,
we may assume that the sequences a! and a2
begin and end with a transition type coupled to a
transition type of a . (In the above example, we
obtain ô = m and o2 = E) . In general, there
may be several pairs a1]|a2 that correspond to
one given a , because the g.(i=l,2) may contain

intermediate uncoupled transitions.
We note that only a few of all the possible

pairs cr1||a2 are relevant to the communication
between the two entities since most of them repre-
sent transition sequences which cannot be realized
either by entity 1 or entity 2, or both. Examples
are given in sections 4 and 6.

4. A SIMPLE EXAMPLE : THE ALTERNATING

BIT PROTOCOL

We consider the alternating bit protocol of
Bartlett et al. (12-),- and use our own notation (11).
The protocol uses the transmission medium usually
in a two-way alternate mode. Therefore the empty
medium abstraction is suitable for describing the
overall transition diagram of the protocol, as
explained below.

4.1 Normal operation

If we consider a reliable transmission medium
with neither transmission errors nor losses, we
obtain a direct coupling between the sender and
receiver components characterized by the pairs

On An

Based on the transition diagrams of the sender and
receiver shown in figure 4 and assuming initializa-
tion in the states 10 , one obtains the transition
diagram of the overall system shown in figure 5
(fat transitions only).

If we allow for transmission errors, then the
following pairs of transition types must be added
to the direct coupling :

DoiiE , fjjE , EI^AO . E||A,

The corresponding transition diagram is shown in
figure 5 (fat and thin transitions).

If, in addition, we allow for message loss, then
the following pairs must be added :

DoIII , DJI , l||Ao_ , I|[Ai_

The corresponding transition diagram is shown in

F3- 4

figure 5 (including the dashed transitions). The
message loss transitions lead to deadlock states.
To recover from these situations, a time-out tran-
sition is provided in the sender component, which
is supposed to trigger only after a D or A
message has been lost, as indicated in figure 5.

new use

new use

Receiver

Figure 4 : State diagram of sender- and
receiver components

new
• ̂

new»*
i i

D 1— ! J A p *- 1
oil Ai'_£o_l

new / /^~\

_D"!;A,

J«\@^
sL^XsW-sr

use

new

Figure 6

Figure 5 : Transion diagram of the overall
system. (Notation:Dt stands for

D^ll D,, D^ for OL!! E,

D^ for D,|| I, etc.)

Complete transition diagram of the ove-
rall system (only the part corresponding
to the right part of figure 5 is inclu-
ded). Notation : same as in figure 5,
and D0||A0 stands for DcA0SJAoD0 ,

D0j)Ao for D0EJJA0D0 , etc.

4.2 Self-synchronization

To check the self-synchronization of the proto-
col, the overall transition diagram has to be cons-
tructed for arbitrary initial states, as shown in
figure 6. One sees by inspection that the protocol
is self-synchronizing. It is interesting to note
that, during reliable transmission, a second cycle
of operation exists. This cycle (through the states
< 20,3i >, etc.) is characterized by simultaneous
message transmission through the medium in both di-
rections. In practice this cycle would not be very
stable, since message loss could easily occur due
to a small mismatch of the processing speeds of the
communication components, and would lead back to
the normal, cycle of operation.

To describe the transitions involving simulta-
neous message transmission in both directions, as
shown in figure 6, we have to introduce the follo-
wing additional pairs of transition types for the
direct coupling of the sender and receiver compo-
nents :

F3- 5

A D
1 y y
!A*E

(correct transmission! - D L';A D
' _JL "_v x

(transmission errors)
' ^E|lJiE

D A HA
A J"

D j|A (loss)
v ' * w * i

D E
JL

(transmission error and loss), where x

D A
.A yjL
0 :|A D_x" v x
D jiTE
_x -1
and y take the values 0 and 1.

If the time-out value in the sender is not pro-
perly adjusted, or no maximum response time can be
established, it is possible that the time-out tran-
sition of the sender will occur before the expec-
ted response of the receiver actually arrives.
This may lead the system from the normal operation
cycle onto the second cycle mentioned above. The
dotted transitions in figure 6 are those transi-
tions of the overall system which are introduced
by assuming no real-time relation between the
time-out transition of the sender and the other
transitions of the system. The transitions shown
are those involving at most one outstanding messa-
ge in each direction. We note that a very short
time-out period may lead to cyclic retransmission
and several messages in transit (if this is sup-
ported by the medium). Although not shown in the
figure, these complex transitions do not invali-
date the conclusions below.

4.3 Abstraction

From the point of view of the user of the pro-
tocol (the next higher protocol layer) only the
transitions new and use are of interest. By ins-
pecting figure 6, it is clear that, after proper
initialization of the system, the only possible
action sequence involving the new and use transi-
tions only is of the form (new.use)™ , i.e. a re-
gular alternation between new.use.new.use...etc.
Therefore the transition diagram of figure 7 is a
suitable abstraction of the protocol for the next
higher protocol layer.

new

use

Figure 7 Finite state model of the service
provided to the higher level by
the alternating bit protocol
(abstraction of figure 5).

To prove that the transition use actually sub-
mits the data that has been obtained during the
transition new, it is sufficient to show that bet-
ween a transition new and the consecutive transi-
tion use of the overall system, there is a correct
reception of a D message at the receiver. This
is obvious from figure 6. We note that the analy-
sis of action sequences (see section 2.3.6) provi-
des a more general proof method.

It is also clear from inspection of figure 6
that the protocol may initially introduce up to
two spurious data packets or loose one if it is
not properly initialized.

5. ADJOINT STATES

Considering the protocol model of figure 1 , we
define for each state $! of the component
entity 1 the adjoint states of $! to be all those
states s2 of the component entity 2 for which
there is a state < s1,sm,s2 > of the overall sys-

tem (where s is some state of the medium] which

is reachable from the initial state by arbitrarily
long paths, i.e. for any given L , there is a path
longer then L which leads from the initial state
tO Sj ,S ,S2

Knowledge of the adjoint states gives informa-
tion about the relative synchronization between the
components entity 1 and entity ?,. When the component
entity 1 is in a given state s, , all it knows
about the state of entity ;' is that the latter is in
one of the adjoint states of s, (9). Clearly, the
adjoint states may be obtained from the overall
transition diagram of the protocol.

In the case of the "empty medium" abstraction or,
more generally, in the case of two directly coupled
components, the adjoint states satisfy the following
property which allows their determination without
the construction of the overall transition diagram.
Writing adj(s,) for the set of adjoint states of
Sj , the property may be stated as follows :

s2e adj(sj) iff

exist
Sl > S2 j such that s2E adj(Sj), s}

and s?—i>s.

t,

or exist
Snt{ such that s2e 'adj(s,) and Si

or exist
S2,t2 such that s2e adj(sj) and s2

t;

ti.

where s. and
Si are states of component

i (i=l ,2) ,ti I[t2 is a pair of directly coupled tran-
sition types, and t! are uncoupled transition ty-

pes of component i(i=l,2) .
This property may be transformed into a set of

equations of the form

adj(sP}) =yFij(adj(s(j)))

where

X if exists t 1 such that

and s}1' is the i-th state of component 1. Such a
system of equations may be solved by recursive subs
titution. Using as initial values

adj(s[l)) = s|k) and adj(s|j)) = 0 for all j/i
yields as the solution, the adjoint states for the
case where the components are initialized in states
.(i) and . (k) respectively. Using as initial

F3- 6

values ddj(si'-;) = {all s-,} for all i yields
as the solution the adjoint states for the case in
which nothing can be assumed about the initiali-
zation. Examples are given elsewhere (1).

6. AN ANALYSIS OF THE X.25 CALL SET-UP

AND CLEARING PROCEDURES

Some results of an analysis of the X.25 call
set-up and clearing procedures have been presen-
ted previously (13) . This section gives more
details about this analysis, removes some restric-
tions of the previous work, and shows how the prin-
ciples outlined in the above sections apply to the
analysis of the X.25 procedures. It is also shown
that the procedures are stable enough for working
in an environment where packets are occasionally
lost.

6.1 The specification of the protocol

The following analysis is based on the proto-
col defined by figure 8. Contrary to the official
X.25 document (14) which uses a single diagram for
specifying the procedures, we use two distinct
transition diagrams for the two communicating com-
ponents, one for the DTE and one for the DCE. The
advantage of our approach has been pointed out
previously (13).

from states from states from states from states
3,4 , 1,2,3,4,5 1,2,3,4,5 2,4,5

DTE DCE

Figure 8 State diagram of the X.25 call set-up
and clearing procedures. Notation :

r : call request i
a : call accepted c
i : clear request d
f : clear confirmation

incoming call
call connected
clear indication

The protocol of figure 8 corresponds to the
specifications of X.25, with the following restric-
tions :

a) A dear request and a clear indication may not
be sent from the states 1, 2, 5 and 1, 3 respec-
tively. There are two reasons for this restric-
tion : (i) it simplifies the analysis (excluding
the repeated clear request and clear indication
transitions in the states 6 and 7, respectively,
makes the protocol conversational, in the sense
of section 3), and (ii) it avoids certain proto-
col instabilities discussed by Belsnes and
Lynning (15).

b) The handling of packets received in the error
state is not specified in the standard (14). On
the contrary to our previous work (13), we assu-
me that packets may be received when the compo-
nent is in the error state. These packets are
ignored.

6.2 The analysis

The protocol occasionally uses the medium in
both directions simultaneously. A typical example
is given in figure 9 which shows the possible tran-
sitions starting in the ready state <!,!>. The
example shows the possibility of call collision,
and abnormal system states due to packet Toss. The
figure also demonstrates the simplification obtained
by the use of the "empty medium" abstraction.

Figure 9 : Partial transition diagram of the X.25
interface, including states with
packets in transit (for instance,

is the state where the DTE is in

state 2, the DCE in state 1, and a
call request is in transit).

F3- 7

ihe main difficulty of the "empty medium" abs-
traction is to decide which pairs of directly cou-
pled transition types must be included in the ana-
lysis for completeness, and which pairs are redun-
dant for the analysis. For example, in order to
take care of the possible two-way simultaneous ope-
rations, the pairs ni.m' jm'.m for
m c \f,a,l,f} and m'e {i,a,d,f} must be inclu-
ded in addition to the primitive pairs mj|m and
m

;he two unexpected adjoint state in case (a2) are
due to the following two undesired cycles

nr .m'.m' '

But pairs such as
M \

,,m'.mv '.nr ' need not be included
because they are equivalent to the successive exe-
cution of the transition pairs

/ 9 N /9\d
m^'.m .nr 1 nr

The protocol also allows for two consecutive
packets to be in transit in one direction. To deal
with the possibility of simultaneous packets in
the other direction, the transition pairs

(1) (2) ,n * ' m* ' — /r /

or , and m.m'

i-<2>.Li

with

| ml(1).ml(2).m with

must be included inm'' '.nr v~' = o.d or f.i
the analysis.

In order to take care of possible packet loss,
additional pairs of transitions must be conside-
red which are derived from the above by replacing
one or more reception transition types by the
identity transition (no transition). The annex
contains a list of all possible transitions of the
overall system in the empty medium abstraction.

6.3 The results

The complete transition diagram of the overall
system is too complex to be shown. The adjoint
states are given in the table below for the follo-
wing cases :

(a) no packet loss
(al) with initial synchronization
(a2) for arbitrary initial states

(b) with possible packet loss, and arbitrary
initial states
(bl) protocol of figure 8
(b2) protocol of figure 8 with time delay after

the transmission of a clear confirmation
packet.

Table of adjoint states of the DCE for a given
state of the DTE.

al
a2

bl

ii

b2

state
1

1

1

1,2,
3,4,
6,7,
E

1,3,
7,E

j

of DTE
2 3

2 3

2 3,6

1,3,

all 4'6>

1,2, 3
3,4,
5,7,
E

4

4

4

1,2,
3,4,
6,7,
E

3,4,
7,E

5

5

5

3,4,
5,7

3,4,
5,7

6

6

6

all

1,3,
4,6,
7,E

7/

7

7,2

1,2,
3,4,
7,E

7,E

E

all

1,3,
4,6,
7

< 7,2 >
•*

< 3,6 ;

f r d j l d f r
o
?, f i l!f i ?,

These potentially infinite cycles may in practice
"not persist long given the intrinsic variable time
delays and any intelligent processing of the clear
by either the DTE or DCE" (16). These cycles could
be completely avoided by introducing, after the
transmission of a clear confirmation packet, a time
delay longer than the transmission time of the me-
dium, i.e. the X.25 link access procedure (case

We have assumed that a similar time delay is
introduced in the error state E before the c-ieai'
request, or indication respectively, is sent. If
this delay is not present, a station in the error
state may send the clear before it has received all
packets in transit (the other station may have sent
two consecutive packets, of which the first has led
into the error state). In this way an infinite cy-
cle may occur during which the medium would never
be empty, although this is not probable.

The adjoint states for the case (a2) indicate
that the protocol is stable (except for the cycles
mentioned above). This means that after an initial
or intermittent perturbation of the synchronization
between the two communicating components, introdu-
ced for whatever reason, the protocol recovers
into its normal mode of operation.

The adjoint states for the case (b2) indicate
that this is also true when the cycles mentioned
above are avoided, and packets may be lost. In this
case the DTE knows less about the state of the DCE
(for most states of the DTE, there are several ad-
joint states of the DCE), since after one station
has sent a given packet, the other may or may not
receive it. It is interesting to note that when
the DTE is in state 3, the DCE is necessarily in
the same state.

The overall states < 2,3 > and < 6,7 > (pairs
of adjoint states) are deadlock states. In these
states, both components wait for a response, which
will never be sent. This situation can possibly be
recovered by retransmission after a time-out period,
as in the case of the alternating bit protocol dis-
cussed in section 4. The same time-out mecanism
could also recover from the packet loss leading
into the states < 2,1 > , < 1 ,3 > , etc. We have
not including possible retransmissions in the ana-
lysis of the protocol .

These results indicate that the X.25 procedures
for call set-up and clearing may be used with an
underlying link level protocol that simply detects
transmission errors, ignores erroneous frames, but
does not recover from losses.

Acknowl edgements

I would like to thank Jan Gecsei , Bill Armstrong
and Mark Gold for many interesting discussions on
the subject of this paper, and Don Weir for poin-
ting out an error in an earlier version.

F3- 3

